Time as Unfolding of Process

David Rideout

Department of Mathematics
University of California, San Diego

Time in Quantum Gravity 13 March 2015
Time as Unfolding of (a Quantum) Process

David Rideout

Department of Mathematics
University of California, San Diego

Time in Quantum Gravity 13 March 2015
Plan of this Talk

1. Introduction to Causal Sets
2. Dynamics of Causal Sets
3. Results
4. Quantum Causal Set Dynamics via Action Integral
5. Summary and Conclusions
Outline

1 Introduction to Causal Sets

2 Dynamics of Causal Sets

3 Results

4 Quantum Causal Set Dynamics via Action Integral

5 Summary and Conclusions

- take lattice discretization seriously, as model for gravity
- metric tensor difficult to define on lattice, while respecting covariance
- simpler, invariant concept: causal ordering
- in discrete language, partial ordering
- this partial order defines the lattice
- consistency with causal ordering of continuum defines correspondence between discrete and continuum
- proposes that the early universe will emerge from a single discrete element, followed by a tree

![Diagram of the Cosmic Tree](image)
Time as Unfolding of (a Quantum) Process

D Rideout

Introduction to Causal Sets
Preliminaries
Definitions
Correspondence with Continuum
Clock Time

Dynamics of Causal Sets
What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results
Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral
Markov Chain Monte Carlo on Causal Sets / Partial Orders
Results
Onset of Asymptotic Regime
Finite β
Observational Cosmology

Summary and Conclusions

Taketani stages of theory construction

phenomenology

- what should phenomena theory explain?

 - perihelion precession of Mercury
 - (deflection of light by the Sun)

kinematics

- substance of theory: "what really exists?"

dynamics

- Einstein’s equations

- spacetime manifold

"equations of motion for substance"

Aristotelian 'gravity'
Galilean 'gravity'
Special Relativity
General Relativity
Quantum Gravity
Causal Sets: Fundamentally Discrete Gravity

Based upon two main observations:

- Richness of causal structure
- Need for discreteness

Properties of discrete causal order ≺:

- irreflexive \((x \not≺ x)\)
- transitive \((x ≺ y \text{ and } y ≺ z \Rightarrow x ≺ z)\)
- locally finite \((|\{y| x ≺ y ≺ z| < \infty\})\)

Some definitions:

- relation & link
- chain & antichain, height & width
- causal interval or order interval
- maximal & minimal elements
Spacetime Manifold as Emergent Structure

The continuum approximation

- **Embedding** – order preserving map \(\phi : C \rightarrow (M, g) \)
 \[x \prec y \iff \phi(x) \prec \phi(y) \quad \forall x, y \in C \]

- **Faithful embedding** (‘Sprinkling’):
 - “preserves number – volume correspondence”
 - Spacetime does not possess structure at scales smaller than discreteness scale

- \(\exists \) faithful embedding \(\implies (M, g) \) approximates \(C \)
Clock Time: Timelike Distance

Timelike geodesic is extremal chronological curve
Lorentzian signature \implies longest curve
Length L of longest chain between x and y

$$d(x, y) := L$$
Clock Time: Timelike Distance

Length L of *longest* chain between x and y

$$d(x, y) := L$$
Clock Time: Timelike Distance

Length L of longest chain between x and y

$$d(x, y) := L$$

$$L(\rho V)^{-1/d} \to m_d \text{ as } \rho V \to \infty$$
What do we mean by Dynamics?

- Hamiltonian evolution
- Lagrangian \leadsto Action
- Sum over histories
 Classical:
 \[
 P(E) = \sum_{\gamma \in E} p(\gamma)
 \]
 Quantum:
 \[
 A(\gamma) = e^{iS(\gamma)/\hbar}
 \]
 \[
 P(E) = \left| \sum_q \sum_{\gamma \in E; \gamma(T)=q} A(\gamma) \right|^2
 \]
- Quantum Measure
 \[
 P(E) = D(E, E)
 \]
 \[
 D(E_1, E_2) = \left| \sum_{\gamma \in E_1, \gamma' \in E_2} e^{i(S(\gamma)-S(\gamma'))/\hbar} \delta(\gamma(T), \gamma'(T)) \right|
 \]
Simplest Dynamical Law: ‘Typical’ Objects
Simplest Dynamical Law: ‘Typical’ Objects

Sequence of many coin flips. Which is the ‘typical’ sequence?

1. HTHHHHTTHTTHHTTHTHHTTTTTTHHTHHTTTTHHHHTTHHHTH
2. HH
3. THT
4. HTHTTTTTTHHTTTTTTHHTTTTTTTTHHTTTTTTTTHTTT
Typical Graphs
Typical Causal Sets
‘Entropy Crisis:’ Dynamical Emergence of the Continuum

\[2^N \ln N \ \text{continuua vs.} \ 2^{N^2/4} \ \text{Kleitman-Rothschild orders} \]
Sequential Growth Dynamics
DR, R Sorkin

Grow causal set, ‘one element at a time’, beginning with empty set
Stochastic (Markov) process
Probabilities based upon three principles

- ‘Internal temporality’ (Causet grows only to the future)
- Discrete general covariance
- Bell causality
Sequential Growth Dynamics
DR, R Sorkin
Grow causal set, ‘one element at a time’, beginning with empty set
Stochastic (Markov) process
Probabilities based upon three principles
- ‘Internal temporality’ (Causet grows only to the future)
- Discrete general covariance
- Bell causality
Sequential Growth Dynamics

DR, R Sorkin

- Infinite sequence of free parameters ('coupling constants')
 \[t_n \geq 0 \]

- 'Transitive percolation' dynamics
 \[t_n = \left(\frac{p}{1-p} \right)^n \]
Outline

1. Introduction to Causal Sets
2. Dynamics of Causal Sets
3. Results
4. Quantum Causal Set Dynamics via Action Integral
5. Summary and Conclusions
Time as Unfolding of (a Quantum) Process: Results

‘Pre-Quantum’:
- Cyclic cosmology with evolving ‘coupling constants’
- Gives rise to deSitter like early universe
- Gives rise to ‘internal time’ within Complex Networks (e.g. Internet)

Quantum:
- When do the Kleitman-Rothschild causets dominate? (in volume-time, n)
- Are almost all histories roughly time-reversal symmetric?
- Is the dynamics able to escape from the Kleitman-Rothschild super-exponential dominance?
- Is there current observational evidence hinting at quantum cosmology of this form?
Structure of Transitive Percolation

- Completely homogeneous: future of an element is independent of anything spacelike to it.
- Due to random fluctuations, however, appears inhomogeneous in time.

‘Originary’ dynamics subsequent to post: Each newborn element must connect to at least one other element.
- Universe expands to volume \(\sim \frac{1}{p} \)

Due to random fluctuations, however, appears inhomogeneous in time.
Cosmic Renormalization

- Growth dynamics formally Markovian, because entire past history is taken as current state, however has long memory
- ‘Cosmic renormalization’: Can describe growth of subsequent cycles as new (originary) dynamics, with renormalized parameters \((t_n)\)
- Transitive percolation is unique fixed point of cosmic renormalization
- Attractive fixed point, no cycles (pointwise convergence)
- Known that \(t_n = (\alpha / \ln n)^n, \alpha \geq \pi^2 / 6\)
 contains infinite number of posts.

(Denjoe O’Connor, Xavier Martin, DR, Rafael Sorkin)
(Avner Ash, Patrick McDonald, Graham Brightwell)
Originary Percolation
Random tree era

- limit $p \ll 1$
- originary — each elt chooses exactly one ancestor
 \rightsquigarrow simple model of random tree
- exponential expansion
- future of every element itself originary percolation
 \implies causal set is 0+1 dimensional at smallest scales
- not exactly spacetime manifold of GR
Originary Percolation

\[N = 16, \, p = 0.2 \]
Early Universe of Growth Dynamics

\[\ell = 6.81 \pm 0.72 \]
\[m = 1.926 \pm 0.023 \]

arXiv:0909.4771 [gr-qc]
Time as Unfolding of (a Quantum) Process

D Rideout

Introduction to Causal Sets
- Preliminaries
- Definitions
- Correspondence with Continuum
- Clock Time

Dynamics of Causal Sets
- What is Dynamics?
- Uniform Distribution
- Sequential Growth
- Dynamics

Results
- Transitive Percolation
- Originary Percolation

Network Science

Quantum Causal Set Dynamics via Action Integral
- Markov Chain Monte Carlo on Causal Sets / Partial Orders
- Results
- Onset of Asymptotic Regime
- Finite β
- Observational Cosmology

Summary and Conclusions
Introduction to Causal Sets
- Preliminaries
- Definitions
- Correspondence with Continuum
- Clock Time

Dynamics of Causal Sets
- What is Dynamics?
- Uniform Distribution
- Sequential Growth
- Dynamics

Results
- Transitive Percolation
- Originary Percolation

Quantum Causal Set Dynamics via Action Integral
- Markov Chain Monte Carlo on Causal Sets / Partial Orders
- Results
- Onset of Asymptotic Regime
- Finite \(\beta \)
- Observational Cosmology

Summary and Conclusions

Network Science
Network Cosmology

Dmitri Krioukov, Maksim Kitsak, Robert S. Sinkovits, David Rideout, David Meyer & Marián Boguñá

Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

Physics explains complex phenomena in nature by reducing them to an interplay of simple fundamental laws.
Network Science

Introduction to Causal Sets
- Preliminaries
- Definitions
- Correspondence with Continuum
- Clock Time

Dynamics of Causal Sets
- What is Dynamics?
- Uniform Distribution
- Sequential Growth
- Dynamics

Results
- Transitive Percolation
- originary Percolation
- Network Science

Quantum Causal Set Dynamics via Action Integral
- Markov Chain Monte Carlo on Causal Sets / Partial Orders
- Results
- Onset of Asymptotic Regime
- Finite β
- Observational Cosmology

Summary and Conclusions
Path Integral for Gravity

- Lorentzian functional integral for gravity
 \[Z = \int_{(M,g)} e^{iS_{\text{EH}}[(M,g)]/\hbar} \]

- Lorentzian ‘path’ sum over causal sets
 \[Z = \sum_{C} e^{iS_{\text{EH}}[C]/\hbar} \]

- Restrict sum to fixed (finite) cardinality
 \[\rightarrow \text{Fixed spacetime volume} \sim \text{unimodular gravity} \]

- Need expression for \(S_{\text{EH}}[C] \)
Discrete □: Towards an Expression for $S_{EH}[C]$

Discrete D’Alembertian operator (R. Sorkin)

$$
\square^{(2)} \phi(x) = \frac{4}{\ell^2} \left(-\frac{1}{2} \phi(x) + \left(\sum_{y \in L_1} -2 \sum_{y \in L_2} + \sum_{y \in L_3} \right) \phi(y) \right)
$$

where

$$L_i = \{y \in C | y \prec x \ and \ N_\Diamond(y, x) = i - 1\}$$
Discrete □: Towards an Expression for $S_{EH}[C]$

- Discrete D’Alembertian operator (R. Sorkin)

In 4d: (Benincasa-Dowker)

$$\Box^{(4)} \phi(x) = \frac{4}{\sqrt{6} \ell^2} \left(-\phi(x) + \left(\sum_{y \in L_1} -9 \sum_{y \in L_2} + 16 \sum_{y \in L_3} -8 \sum_{y \in L_4} \right) \phi(y) \right)$$
High density $\ell \to 0$ limit
High density $\ell \to 0$ limit
Einstein-Hilbert action for Causal Sets
(Benincasa-Dowker PRL Jan 2010))

- In curved spacetime:

\[
\lim_{\ell \to 0} \langle \Box^{(4)} \phi(x) \rangle = \left(\Box - \frac{1}{2} R(x) \right) \phi(x)
\]

- \(\Box^{(4)} (-2)\) gives Ricci scalar

- Use to write Einstein-Hilbert action for causal set

\[
S_{EH}^{(4)}[C] = O(1)(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))
\]

where \(N_i(C) = |\{x, y \in C | N_\Diamond(x, y) = i - 1\}|\)

- Expression for path sum for causal sets, appropriate to 4d:

\[
Z = \sum_{C \in \mathcal{C}} e^{i\tilde{\beta}(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))}
\]
Expression for (4d) path sum for causal sets:

\[Z = \sum_{C \in \mathcal{C}} e^{iS_{EH}[C]}/\hbar = \sum_{C \in \mathcal{C}} e^{i\tilde{\beta}(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))} \]

\[
\begin{array}{cccccc}
0 & 1 & 3 & 4 & 2 \\
N = 6 & N_1 = 6 & N_2 = 0 & N_3 = 1
\end{array}
\]
Generalized ‘Wick Rotation’

- Usual approach is to perform Wick rotation $t \rightarrow it$
- Alternative: Analytically continue coefficient $\tilde{\beta} \mapsto i\beta$
- Casts sum into thermodynamic partition function

$$Z = \sum_{C \in C} e^{-\beta(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))}$$

- ‘Euclidean’ sum, can be analyzed numerically using Metropolis Monte Carlo techniques
Markov Chain Monte Carlo on Causal Sets
(J. Henson, DR, R. Sorkin, S. Surya)

- Markov Chain: random walk on set of ‘states’, governed by mixing matrix M
- Theorem: If M satisfies
 - Ergodicity
 - Detailed balance
 \[\Pr(C_1) \Pr(C_1 \to C_2) = \Pr(C_2) \Pr(C_2 \to C_1) \]
then, independently of initial state, at late times probability to visit state C is $\Pr(C)$

- Metropolis Monte Carlo over (naturally labeled) partial orders $(x \prec y \implies x < y)$

- Found two moves which satisfy these conditions
 \[\rightarrow \text{Use uniform mixture of two moves} \]

- Transitivity — must enforce non-local constraint on relations

- Define link $x \triangleleft y$: $x \prec y$ and $\{z | x \prec z \prec y\} = \emptyset$
Relation Move

- If $x < y$: Remove single relation $x \prec y$
- If $x \nless y$ and form **critical pair**
 ($\text{past}(x) \subseteq \text{past}(y)$ and
 $\text{fut}(y) \subseteq \text{fut}(x)$):
 Insert single relation $x \prec y$
- Else do nothing
- If $x \triangleleft y$: Remove all relations from $\text{incpast}(x)$ to $\text{incfut}(y)$, save those required by transitivity via other elements.
- If $x \not\triangleleft y$, and \nexists links from $\text{incpast}(x)$ to $\text{incfut}(y)$: Insert all relations from $\text{incpast}(x)$ to $\text{incfut}(y)$.
- Else do nothing.
\[\hbar \to \infty \text{ Limit} \]

- \[\hbar \to \infty \implies \beta = 0 \leadsto \text{Uniform measure on sample space} \]
- Causal sets on up to 16 elements enumerated explicitly
- Kleitman-Rothschild theorem (Trans. AMS 1975)

- Non-locality / long range interaction \(\leadsto \) How big is big?

In the remainder of this paper we will adopt the convention that any inequality or other statement about functions of \(n \) will be meant to be true only for all \(n \) sufficiently large, where how large depends on the statement. This will be a convenience since there are so many such statements below.
Height distribution for \(n \leq 9 \)

![Graph showing height distribution for \(n \leq 9 \)]
Height distribution for $n \leq 82$
Time as Unfolding of (a Quantum) Process

D Rideout

Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with Continuum
Clock Time

Dynamics of Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo on Causal Sets / Partial Orders
Results
Onset of Asymptotic Regime
Finite β
Observational Cosmology

Summary and Conclusions

Height distribution for $n \leq 82$ (logscale)
Mean height for $n \leq 82$
Number of minimal and maximal elements

The graph shows the fraction of 58-orders across different values. The y-axis represents the fraction of 58-orders, and the x-axis represents different values. The graph includes markers for the number of minimal and maximal elements, as well as the difference between maximal and minimal elements.

Table with extracted data:

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
<th>max - min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Ordering Fraction

![Plot of Ordering Fraction](image)

- **Fraction of 58-orders**
- **r** values range from 0.22 to 0.42
- Y-axis represents the fraction of 58-orders with values ranging from 0 to 0.012

Legend: Red bars with error bars indicate the data points for each r value.
Mean ordering fraction for $n \leq 82$
Escape from KR orders

![Graph showing the fraction of 64-orders plotted against height, with two lines for beta = -0.057 and beta = 0.](image.png)
“Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six parameter model of flat ΛCDM.”

Tension with ΛCDM Concordance Model

$I. Jubb, F. Dowker, private communication, based on arXiv:1407.5405 [gr-qc]]$
Outline

1. Introduction to Causal Sets
2. Dynamics of Causal Sets
3. Results
4. Quantum Causal Set Dynamics via Action Integral
5. Summary and Conclusions
Time as Unfolding of (a Quantum) Process

‘Pre-Quantum’ :

- Cyclic cosmology with evolving ‘coupling constants’
- Gives rise to deSitter like early universe
- Gives rise to ‘internal time’ within Complex Networks (e.g. Internet)

Quantum :

- When do the Kleitman-Rothschild causets dominate? (in volume-time, n) \rightsquigarrow For some $n > 100$ perhaps.
- Are almost all histories roughly time-reversal symmetric? \rightsquigarrow No!
- Is the dynamics able to escape from the Kleitman-Rothschild super-exponential dominance? \rightsquigarrow Yes!
- Is there current observational evidence hinting at quantum cosmology of this form? \rightsquigarrow Perhaps!
Escape from KR orders

\[n = 67; \beta = -0.045 \]
\[n = 64; \beta = -0.057 \]